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Abstract

Generative models for tabular data face a long-standing challenge in the effective1

modelling of heterogeneous feature interrelationships, especially for generating2

tabular data with both continuous and categorical input features. Capturing these3

interrelationships is crucial as it allows models to understand complex patterns4

and dependencies that exist in the underlying data. A promising option to ad-5

dress the challenge is to devise suitable encoding/embedding schemes for the6

input features before the generative modelling process. However, prior methods7

often rely on either suboptimal heuristics such as one-hot encoding of discrete8

features and separated modelling of discrete/continuous features, or latent space9

generative models. Instead, our proposed solution leverages efficient continuous10

encodings to unify the data space and applies a single generative process across11

all the encodings jointly, thereby efficiently capturing heterogeneous feature inter-12

relationships. Specifically, it employs encoding schemes such as Analog Bits or13

Dictionary Encoding that effectively convert discrete features into continuous ones.14

Extensive experiments on real-world and synthetic tabular datasets comprising of15

heterogeneous features demonstrate that our encoding schemes, combined with16

Flow Matching as the generative model, significantly enhances model capabilities.17

Our models, TabUnite-i2bFlow and TabUnite-dicFlow, are able to address data18

heterogeneity, achieving superior performances across a broad suite of datasets,19

baselines, and benchmarks while generating accurate, robust, and diverse tabular20

data.21

1 Introduction22

Tabular data is omnipresent in data ecosystems of many sectors such as healthcare, finance, and23

insurance (Clore et al., 2014; Moro et al., 2012; Datta, 2020). These industries utilise tabular data24

generation for many practical purposes, including imputing missing values, reducing sparse data,25

and better handling imbalanced datasets (Jolicoeur-Martineau et al., 2024; Onishi & Meguro, 2023;26

Sauber-Cole & Khoshgoftaar, 2022). However, generative models face challenges inherent to tabular27

data including feature heterogeneity (Liu et al., 2023). Unlike homogeneous data modalities such28

as images or text, tabular data often contain mixed feature types, ranging from (dense) continuous29

features to (sparse) categorical features. More importantly, these tabular features, regardless of30

form, are intertwined contextually (Borisov et al., 2023). For example, the numerical salary of a31

person is correlated to their categorical age and education (Becker & Kohavi, 1996). Therefore32

capturing the interrelationships between tabular heterogeneous features is crucial, as it allows models33

to incorporate contextual knowledge for understanding complex patterns and dependencies in the34

underlying data. Additionally, an increasing demand is observed for larger tabular generative models35

trained potentially on many different datasets, where the capability to model heterogeneous feature36

spaces across datasets is of utmost importance (van Breugel & van der Schaar, 2024).37
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A promising solution for the feature heterogeneity challenge is to devise suitable encoding/embedding38

schemes for pre-processing the input features before applying the generative model. However, existing39

methodologies often rely on (1) separate generative processes on discrete & continuous features40

which do not model their correlations properly, (2) sub-optimal encoding heuristics, or (3) learned41

latent embedding which is parameter inefficient. For example, the one-hot encoding approach for42

categorical variables leads to sparse representations in high dimensions, where generative models are43

susceptible to under-fitting (Krishnan et al., 2017; Poslavskaya & Korolev, 2023). On the other hand,44

creating a latent embedding space requires training an additional embedding model based on e.g.,45

ResNet (He et al., 2015) or a Transformer-based β-VAE (Higgins et al., 2017; Kingma & Welling,46

2013; Zhang et al., 2023) and trained using e.g., self-supervised learning (Chen et al., 2020). Hence,47

the quality of latent space generative models also depends on the embedding model’s capability to48

capture the underlying dependency structure of the tabular data. Overall, proper pre-processing of49

heterogeneous features is crucial for high-quality tabular data generation, and poor encoding schemes50

for the data features can lead to information loss that can not be recovered from the generative model.51

The goal of our work is to generate high-quality synthetic tabular data by employing (1) proficient52

categorical encoding schemes to unify the data space. This enables a single generative model to be53

applied while enforcing a (2) fast and efficient sampling procedure. In summary, our contributions54

are as follows:55

1. We devise two categorical encoding schemes using Analog Bits (Chen et al., 2022) and56

Dictionary Encoding (partially inspired by Mairal et al. (2008, 2009)) that seamlessly57

convert categorical variables into an efficient and compact continuous representation. By58

facilitating the model to generate data in a unified continuous space, we can “unite” the mixed59

features to capture heterogeneous feature interrelationships based on a single generative60

model on continuous inputs. Empirically, under our encoding schemes, the model learns to61

accommodate the heterogeneity of tabular features.62

2. We employ Flow Matching (Lipman et al., 2022; Liu et al., 2022; Tong et al., 2023) as our63

generative model. It is a simulation-free framework for training continuous normalizing flow64

models (Chen et al., 2019) by replacing the stochastic diffusion process with a predefined65

probability path constructed with theories from optimal transport (McCann, 1997). Our66

results showcase that combining our categorical encoding schemes with Flow Matching67

speeds up the sampling speed dramatically, saving time and computation power, while68

enhancing the generation quality. Consequently, we propose two models: TabUnite-i2bFlow69

and TabUnite-dicFlow. Both models achieve superior performances across a wide spectrum70

of tabular data generation baselines, datasets, and benchmarks. The architecture of our71

models is illustrated in Figure 1.72

3. We curate a large-scale heterogeneous tabular dataset from the Census dataset (Meek et al.,73

2001) with over 80 features of mix-types and over 2.4 million samples. This new benchmark74

is significantly more challenging for tabular generative models than existing benchmarks75

from public data repositories (Dua & Graff, 2017; Vanschoren et al., 2013) which often76

have < 100k datapoints and ≤ 30 features. It reflects better on the scalability of tabular77

generative models, where our empirical results again reveal the importance of good encoding78

schemes for heterogeneous features.79

2 Related Works80

Generative Models in Tabular Data Generation. The latest tabular data generation methods have81

made considerable progress compared to traditional methods such as Bayesian networks (Rabaey82

et al., 2024) and SMOTE (Chawla et al., 2002). CTGAN and TVAE (Xu et al., 2019) were two83

models based on the Generative Adversarial Network (Goodfellow et al., 2014) and Variational84

Autoencoder (Kingma & Welling, 2013) architectures respectively. These models were applied along85

with techniques such as conditional generation and mode-specific normalization to further learn86

column-wise correlation. Other works such as GReaT (Borisov et al., 2023) and GOGGLE (Liu87

et al., 2023) saw successes with the use of graph neural networks and autoregressive transformer88

architectures respectively in performing tabular data synthesis. Recently, Diffusion (Ho et al., 2020)89

and Flow Matching (Lipman et al., 2022) provided new avenues for exploration within the tabular90

domain. This included STaSy (Kim et al., 2022), which employed a score-matching diffusion model91
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Figure 1: TabUnite-i2bFlow and TabUnite-dicFlow Architecture. Continuous features xcont are
encoded via a QuantileTransformer (Pedregosa et al., 2011). Categorical data xcat are encoded using
Analog Bits or Dictionary Encoding methods. With an efficient continuous data space, we apply
Conditional Flow Matching as our generative model where we ultimately synthesise samples. These
samples are then mapped back to their original representation via their respective decoding schemes.

paired with techniques such as self-paced learning and fine-tuning to stabilise the training process,92

and CoDi (Lee et al., 2023), which utilised separate diffusion schemes for categorical and numerical93

data along with interconditioning and contrastive learning to improve the synergy among different94

features. TabDDPM (Kotelnikov et al., 2023) presented a similar diffusion scheme compared to95

CoDi and showed that the simple concatenation of categorical and numerical data before and after96

denoising led to improvements in performance. The most recent work in this domain was TabSYN97

(Zhang et al., 2023), a latent diffusion model which transformed features into a unified embedding98

via a feature tokenizer before applying EDM diffusion (Karras et al., 2022) to generate synthetic data.99

Encoding Schemes. CoDi (Lee et al., 2023) and TabDDPM (Kotelnikov et al., 2023) utilised a100

separated data space, where Gaussian Diffusion (Ho et al., 2020) was performed on numerical101

columns and Multinomial Diffusion (Hoogeboom et al., 2021) was performed on categorical columns,102

with some additional techniques used to bind the two separate diffusion models. However, learning103

the cross-correlation among various features through separate methods was often less effective than104

conducting diffusion directly across a unified data space that included all features in the dataset. To105

achieve this, various encoding schemes were employed to process both categorical and numerical106

data so they occupy the same data space. One of the most widely used methods was one-hot encoding,107

which was used in both STaSy (Kim et al., 2022) and TabSYN (Zhang et al., 2023) that encoded108

categorical columns. One-hot encoding transformed categorical variables into a binary vector, where109

each category was populated with 0’s with the exception of a single 1 that indicated the presence110

of a particular category. On top of one-hot encoding, TabSYN (Zhang et al., 2023) further used111

a column-wise feature tokenization technique that together transformed numerical and categorical112

features all into shared embeddings of the same length.113

Flow Methods. Flow methods were introduced to the field of diffusion-based deep generative114

models as Probability Flow ODEs (Song et al., 2021), which, originally based on the concept of115

normalizing flows (Rezende & Mohamed, 2016), allowed for deterministic inference and exact116

likelihood evaluation. Compared to other diffusion-based methods such as score-matching (Song117

et al., 2021), DDPM (Ho et al., 2020), and DDIM (Song et al., 2022), flow-based models used118

continuous transformations defined by neural ODEs, to map samples from a simple distribution to119

samples from a more complex target distribution. This allowed for efficient density estimation and120

generation of high-dimensional data. In the context of tabular data, Flow Matching was applied to121

gradient-boosted trees in place of neural networks to learn the vector field (Jolicoeur-Martineau et al.,122

2024).123
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Figure 2: TabUnite Encoding Methods. We leverage Analog Bits & Dictionary encoding to transform
categorical features into a compact and efficient continuous representation before applying a single
unified generative model to synthesise tabular data.

3 TabUnite Models124

Before diving into our methodology, we begin the section with preambles regarding a high-level125

overview of the tabular setting. Here a tabular dataset is characterized as X = {xi}Ni=1 with N126

samples (rows), where a datapoint xi ∈ RDcont × NDcat comprises of Dcont continuous features and127

Dcat categorical features. We denote each xi as xi := [xcont
i,1 , · · · , xcont

i,Dcont
, · · · , xcat

i,1, · · · , xcat
i,Dcat

].128

Our goal is to generate synthetic data samples, xsyn, that mimic the quality of the real data, X. To do129

so, we are required to learn a parameterized generative model known as pθ(X), from which xsyn can130

be sampled. Prior to learning, extensive data pre-processing is required where categorical features131

are encoded into continuous features: f(xcat) = xenc, where f denotes the encoder. Poor or sparse132

feature encoding of categorical features can hinder the model’s ability to learn effectively. Therefore,133

we devise efficient and effective encoding schemes to address this issue.134

3.1 Encoding Schemes135

We explore Analog Bits (Chen et al., 2022) and Dictionary to encode categorical features. note that136

continuous features are encoded using the QuantileTransformer (Pedregosa et al., 2011) where we137

follow TabSYN’s and TabDDPM’s methodology (Zhang et al., 2023; Kotelnikov et al., 2023).138

Analog Bits Encoding. A categorical feature that has K unique categories, xcat ∈ {0, . . . ,K− 1},139

can be expressed using ⌈log2(K)⌉ binary bits. For example, a categorical feature with K = 5140

categories is expressed using ⌈log2(5)⌉ = 3 bits with an embedding function f(xcat) = xenc ≡ xi2b141

that maps xcat ∈ {0, 1, 2, 3, 4} to xi2b ∈ {000, 001, 010, 100, 101} respectively. Subsequently,142

each binary bit is cast into a real-valued representation, followed by a shift and scale formula:143

xi2b = (xi2b · 2 − 1). This transformation shifts and scales the binary values {0, 1} to {−1, 1}.144

Thus, training and sampling of continuous-feature generative models (e.g., diffusion models) become145

computationally tractable. For generations, thresholding and rounding are applied to the generated146

continuous bits from the model to convert them back into binary form, which can be decoded trivially147

back into the original categorical values.148

Dictionary Encoding. A categorical feature that has K unique categories, xcat ∈ {0, . . . ,K − 1},149

can be expressed using a look-up embedding table function which encodes the categories to equally150

spaced real-valued representations within the range [−1, 1]. Note that when a categorical feature151

contains more categories, the embedding requires a larger range to prevent the values from being152

too close to each other, hindering the model’s ability to distinguish between categories. This can153

be addressed by increasing the range accordingly. The encoding function is defined as follows:154

f(xcat) = xenc ≡ xdic = −1 + 2xcat

K−1 . For example, a categorical feature with K = 5 categories155

is encoded using the look-up table function, f(xcat), that maps xcat ∈ {0, 1, 2, 3, 4} to xdic ∈156

{−1,−0.5, 0, 0.5, 1} respectively. Consequently, this also ensures the preservation of the intrinsic157

order in ordinal data. To perform decoding, the Euclidean pairwise distance between xgen and each158

of the K categorical embeddings is calculated. The categorical value that corresponds to the nearest159

embedding vector is chosen. In our experiments, we use a 1-dimensional encoding setup described160
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above. We can also extend Dictionary Encoding to n dimensions when there is a need to capture161

more nuanced patterns in complex datasets. We create an embedding matrix M ∈ RK,n by filling162

it with randomly sampled values from a standard normal distribution N (0, 1). We then normalise163

this embedding matrix by scaling the values of each column linearly to the range [−1, 1], using each164

column’s minimum and maximum values. The resulting matrix is our Dictionary, where we denote165

the lookup operation as function f .166

In Figure 2, we consider an example categorical data point of xcat = 5 with K = 7 categories167

where xcat ∈ {0, 1, 2, 3, 4, 5, 6}. Analog Bits can encode xcat = 5 into ⌈log2(7)⌉ = 3 bits where we168

deemed it to be xi2b = 101. It is then cast into R followed by the scale and shift formula. Dictionary169

creates a look-up embedding table where the different categories are distributed evenly as a real170

number within the range [−1, 1]. In our example, xcat = 5 is mapped to xdic = .67 by the table. A171

similar reverse process is applied to both methods for obtaining the decoded representations.172

In contrast to traditional one-hot categorical encoding, our encoding methods offer more efficient and173

dense representations. One-hot encoding can lead to high-dimensional sparse vectors (Poslavskaya &174

Korolev, 2023) and cause underfitting when learning from it (Krishnan et al., 2017). On the contrary,175

Analog Bits encoding reduces dimensionality whereas Dictionary encoding transforms the data into a176

more compact format, preserving the intrinsic relationships between categories. This efficiency can177

lead to faster training/sampling times, and improved performance in machine learning models by178

leveraging continuous representations for categorical data. Comparing our two encoding methods,179

Dictionary encoding is preferred when converting ordinal categorical data due to the presence of an180

intrinsic ordering among the categories that are preserved in the embedding space.181

3.2 Conditional Flow Matching182

After encoding our continuous and categorical columns, we are presented with a unified and continu-183

ous data space, Xi2b ∈ RN×(Dcont+⌈log2(Dcat)⌉) and Xdic ∈ RN×(Dcont+Dcat×n). For convenience,184

we define Xunite to represent either Xi2b or Xdic, depending on the encoding method used. Sub-185

sequently, we apply Conditional Flow Matching (Lipman et al., 2022) as our generative model186

to synthesise our tabular data. The Flow matching models built on top of the feature encodings187

with Analog Bits (“i2b”) and Dictionary (“dic”) encodings are referred to as TabUnite-i2bFlow and188

TabUnite-dicFlow, respectively.189

Let x denote a sample from the dataset Xunite, i.e. x ∼ Xunite. We learn a vector field vt(x) to190

approximate the true vector field ut(x|x1), yielding an objective function of the following:191

LCFM (θ) = Eq(x1),pt(x|x1)||vt(x)− ut(x|x1)||2 (1)

This in turn generates a probability density path pt(x|x1). In order to generate the path pt(x|x1) via192

vector field ut(x|x1), we consider the flow ψt:193

[ψt]∗p(x) = pt(x|x1) (2)

where ψt(x) = σ(x1)x + µt(x1). This property helps establish a probability path from the noise194

distribution p0(x|x1) = p(x) to pt(x|x1). With the simple affine map property of ψt, we use it to195

solve for vector field u:196

ut(x|x1) =
σ′
t(x1)

σt(x1)
(x− µt(x1)) + µ′

t(x1) (3)

generating Gaussian probability path pt(x|x1). Lastly, by integrating optimal transport theories, the197

final objective function is the following:198

LCFM (θ) = Et,q(x1),p(x0)||vt(ψt(x0))− (x1 − (1− σmin)x0)||2 (4)

Relative to other generative models, particularly Diffusion, Conditional Flow Matching synthesises199

tabular data with a much higher sampling speed while also attaining a better generalization.200

4 Experiments201

We evaluate the performance of TabUnite-i2bFlow (Analog Bits + Flow Matching) and TabUnite-202

dicFlow (Dictionary encoding + Flow Matching) on a wide range of real-world and synthetic datasets,203

benchmarks, and compare the proposed models with a comprehensive number of baselines.204
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Table 1: AUC (classification) and RMSE (regression) scores of Machine Learning Efficiency. ↑
indicates that the higher the score, the better the performance, vice versa. Values bolded in red and
blue are the best and second best-performing models respectively. Details are found in Appendix C.

Methods Adult Default Shoppers Magic Beijing News Overall Rank
AUC ↑ AUC ↑ AUC ↑ AUC ↑ RMSE ↓ RMSE ↓

Real 0.927±0.000 0.770±0.005 0.926±0.001 0.946±0.001 0.423±0.003 0.842±0.002 N/A

SMOTE 0.899±0.007 0.741±0.009 0.911±0.012 0.934±0.008 0.593±0.011 0.897±0.036 5

CTGAN 0.886±0.002 0.696±0.005 0.875±0.009 0.855±0.006 0.902±0.019 0.880±0.016 8
TVAE 0.878±0.004 0.724±0.005 0.871±0.006 0.887±0.003 0.770±0.011 1.01±0.016 8
GOGGLE 0.778±0.012 0.584±0.005 0.658±0.052 0.654±0.024 1.09±0.025 0.877±0.002 11
GReaT 0.844±0.005 0.755±0.006 0.902±0.005 0.888±0.008 0.653±0.013 OOM 7
STaSy 0.906±0.001 0.752±0.006 0.914±0.005 0.934±0.003 0.656±0.014 0.871±0.002 4
CoDi 0.871±0.006 0.525±0.006 0.865±0.006 0.932±0.003 0.818±0.021 1.21±0.005 10
TabDDPM 0.910±0.001 0.761±0.004 0.915±0.004 0.932±0.003 1.91±0.680 3.46±1.25 6
TabSYN 0.906±0.001 0.755±0.004 0.918±0.004 0.935±0.003 0.586±0.013 0.862±0.021 3

TabUnite-i2bFlow 0.911±0.001 0.763±0.004 0.918±0.005 0.941±0.003 0.543±0.007 0.847±0.014 1
TabUnite-dicFlow 0.911±0.002 0.758±0.006 0.908±0.006 0.943±0.003 0.555±0.006 0.848±0.013 2

Datasets. The datasets in our experiments are from the UCI Machine Learning Repository (Dua &205

Graff, 2017), synthetic toy datasets (Chen et al., 2018), and our own self-curated dataset, “Census206

Synthetic”. The real-world UCI tabular datasets are chosen because they were previously utilised207

to evaluate the existing baselines. Next, we leverage synthetic toy datasets to prove the faithfulness208

of our model. Lastly, we curate a dataset that is much larger than existing datasets in the number209

of samples (approx. 2.5 million samples) and comes with a large set of mixed features (approx. 40210

and 41 categorical and continuous features each). The training/validation/testing sets are split into211

80/10/10% apart from the Adult dataset which we adhere to its original documented splits. Full212

details of the datasets can be found in Appendix C.1.213

Baselines: Existing modeling approaches. We compare our model against eight other existing214

methods for tabular generation. This includes CTGAN (Xu et al., 2019), TVAE (Xu et al., 2019),215

GOGGLE (Liu et al., 2023), GReaT (Borisov et al., 2023), TabDDPM (Kotelnikov et al., 2023),216

STaSy (Kim et al., 2022), CoDi (Lee et al., 2023), and, TabSYN (Zhang et al., 2023). SMOTE217

(Chawla et al., 2002), an interpolation-based method, is also included as a base reference model. The218

results from CTGAN, TVAE, GOGGLE, GReaT, STaSy, and CoDi are taken from the TabSYN paper219

(Zhang et al., 2023). The main competitors to our model are TabSYN and TabDDPM since they are220

the best-performing models to date. Hence, we reproduce the results of TabSYN and TabDDPM per221

the recommended hyperparameters mentioned by the authors of their respective papers. More details222

regarding these baselines can be found in Appendix C.2.223

Ablations: Encoding schemes and generative models (Flow/Diffusion). We conduct our ablation224

studies with respect to various encoding schemes and generative models. This assists us in proving225

the effectiveness of our encoding schemes (Analog Bits and Dictionary) as well as Flow Matching226

(Lipman et al., 2022) as the generative model. The detailed implementations of these ablations are227

introduced in Appendix C.3.228

Benchmarks & metrics. We evaluate the generative performance on a broad suite of benchmarks229

from TabSYN (Zhang et al., 2023). We analyse the capabilities in downstream tasks such as machine230

learning efficiency, where we determine the AUC score for classification tasks and RMSE for231

regression tasks of a tabular data classifier (XGBoost (Chen & Guestrin, 2016)) on the generated232

synthetic datasets. Next, we conduct experiments on low-order statistics where we perform column-233

wise density estimation (CDE) and pair-wise column correlation (PCC). Lastly, we examine the234

models’ quality on high-order metrics such as α-precision and β-recall scores (Alaa et al., 2022).235

We add two extra benchmarks (part of Appendix C.4) including a detection test metric, Classifier236

Two Sample Tests (C2ST) (SDMetrics, 2024) and a privacy preservation metric, Distance to Closest237

Record (DCR) (Minieri, 2022). Further details regarding this section can be found in Appendix C.4.238
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Figure 3: (a) The x-axis illustrates the sampling steps and the “Ground Truth” of the dataset whereas
the y-axis depicts the methods. TabUnite methods are faithful in generating high-quality samples that
match the ground truth in a short period of sampling duration. (b) The x-axis illustrates the training
iterations whereas the y-axis depicts the accuracy of the generated categorical columns. Training
TabUnite methods are stable and converge at a higher accuracy when compared to TabDDPM.

4.1 Model Comparisons on Predefined Baselines239

We benchmark TabUnite-i2bFlow and TabUnite-dicFlow across 6 datasets, against a wide range240

of baselines, in terms of a downstream task (machine learning efficiency) – XGBoost’s clas-241

sification/regression performance (Chen & Guestrin, 2016) trained on generated synthetic data242

(AUC/RMSE). Following the setting in TabDDPM and TabSYN (Kotelnikov et al., 2023; Zhang243

et al., 2023), we split the datasets into training and testing sets where the generative models are244

trained on the training set. Synthetic samples of equivalent size are then generated based on the245

trained generative models. The generated data is subsequently evaluated against the mentioned246

benchmarks, using the testing set—unseen during training and generation phases—to assess the247

models’ performance and generalization.248

As observed in Table 1, both results of TabUnite-i2bFlow and TabUnite-dicFlow achieve the best249

performance compared to existing baselines. We also identify that TabUnite-i2bFlow is superior to250

TabUnite-dicFlow as most datasets contain more non-ordinal categorical features than ordinal ones.251

To further justify the faithfulness of our model, we use synthetic toy examples, allowing us to assess252

our model’s integrity against the known ground truth.253

4.2 Ground Truth Assessment with Synthetic Toy Examples254

Qualitative Results. We further demonstrate the effectiveness of our method in identifying ground255

truth relevance for data synthesis. We created a synthetic “Olympic” tabular dataset and visualised256

it qualitatively in terms of its structure (shape and sharpness of Olympic rings) and colour. Details257

regarding the dataset can be found in Appendix C.1. Our goal is to illustrate the integrity of258

our encoding method and sampling speed by mimicking the qualitative ground truth attributes of259

the real dataset. Our primary predefined model for comparison is TabDDPM. We also introduce260

TabFlow, a replica of TabDDPM except that we replace DDPM/Multinomial Diffusion with Flow261

Matching/Discrete Flow Models (Campbell et al., 2024).262

Figure 3a displays the synthesised samples for TabUnite-i2bFlow, TabUnite-dicFlow, TabFlow, and263

TabDDPM across various sampling steps. As early as 10 steps, both TabUnite methods converge,264

achieving high-quality structure and colour in relation to the ideal “Ground Truth” visualisation.265

However, there is no apparent “Olympic” structure for TabDDPM. Although TabFlow presents an266

“Olympic” structure, it is difficult to identify the colours. TabFlow requires approximately 100 steps to267

differentiate between the colours clearly. Even at 500 steps, TabDDPM is still lacking in terms of its268

structure where the rings are visually less precise when compared to the “Ground Truth”. Therefore,269

the experiment highlights both TabUnite-i2bFlow and TabUnite-dicFlow’s faithfulness and integrity270

in generating high-quality samples that match the ground truth in a short period of sampling duration.271

Quantitative Results. In addition to our qualitative results, we further demonstrate quantitatively272

that our methods are faithful to the model’s decision-making process by creating an additional273

synthetic toy dataset. In this dataset, categorical columns are created through an injective mapping274
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Table 2: RMSE (regression), Column-Wise Density Estimation (CDE), Pair-Wise Column Correlation
(PCC), α-Precision, and β-Recall scores for our Census Synthetic and Beijing datasets. ↑ indicates
that the higher the score, the better the performance, vice versa. Values bolded in red and blue are
the best and second best-performing models respectively. Details are found in Appendix C.

Methods Census Synthetic Overall Rank
RMSE ↓ CDE ↑ PCC ↑ α ↑ β ↑

TabDDPM 0.194±0.012 86.44±0.011 90.29±0.109 86.60±0.104 34.37±0.050 5
oheDDPM 1.171±0.024 55.34±0.023 50.66±0.014 0.600±0.001 0.000±0.000 8
i2bDDPM 0.156±0.004 76.52±0.006 77.38±0.584 77.54±0.098 1.25±0.008 6
dicDDPM 0.168±0.005 86.55±0.023 90.36±0.109 91.86±0.019 34.11±0.080 4
TabFlow 0.131±0.005 86.12±0.007 90.07±0.704 95.31±0.038 39.17±0.098 3
oheFlow 0.332±0.003 75.57±0.011 79.58±0.189 69.59±0.080 0.241±0.015 7

TabUnite-i2bFlow 0.125±0.003 86.41±0.016 90.95±0.106 91.65±0.067 39.30±0.074 1
TabUnite-dicFlow 0.140±0.003 86.13±0.022 90.49±0.101 98.15±0.060 36.16±0.047 2

Beijing Overall Rank
RMSE ↓ CDE ↑ PCC ↑ α ↑ β ↑

TabDDPM 1.91±0.680 66.98±22.6 61.63±24.3 33.99±46.1 19.89±24.9 7
oheDDPM 2.07±0.697 48.88±2.26 44.70±3.61 2.74±0.78 3.43±2.05 8
i2bDDPM 0.662±0.017 82.17±0.27 69.95±0.60 57.78±0.83 27.15±3.56 5
dicDDPM 0.960±0.100 84.23±1.46 69.07±2.26 74.73±12.5 12.74±3.89 6
TabFlow 0.583±0.018 96.57±0.07 94.10±0.16 96.16±0.95 58.43±1.22 3
oheFlow 0.741±0.017 85.45±0.98 75.39±1.96 84.98±6.39 20.45±1.71 4

TabUnite-i2bFlow 0.538±0.007 97.47±0.33 96.23±0.39 96.08±1.45 61.02±0.59 2
TabUnite-dicFlow 0.559±0.009 98.15±0.17 96.27±0.31 97.64±0.55 60.69±0.40 1

from the numerical columns. We evaluate the synthesis of these categorical variables by taking the275

absolute value of the difference between the real value and the synthesised value. More details can276

be found in Appendix C.1. Our result in Figure 3b depicts the accuracy of the generated categorical277

columns over the number of training iterations. It illustrates that training both TabUnite models is278

stable and converges at a higher accuracy when compared to TabDDPM while remaining competitive279

with TabFlow.280

4.3 Ablation Study: Encoding Scheme and Model Choice281

To further validate the effectiveness of Analog Bits and Dictionary encoding schemes, as well as282

Flow Matching as our generative model, we conduct an ablation study to isolate the generative283

model while varying the encoding methods among Analog Bits, Dictionary, separate modelling,284

and one-hot encoding. We also perform the reverse, isolating the encoding schemes while varying285

the generative models between Flow Matching and DDPM. The real-world dataset we select for286

comparison is “Beijing” since it has a good amount of samples (43, 824) as well as a balanced set287

of continuous (7) and categorical (5) features. However, an issue is that a vast majority of these288

publicly available datasets from the UCI machine learning repository (Dua & Graff, 2017) as well as289

other databases (Vanschoren et al., 2013) lack datasets with a large number of samples (> 100k) and290

mixed features (> 15 continuous and categorical features). Furthermore, accessing high-dimensional291

real-world datasets with heterogeneous features can be challenging. For instance, the PLCO dataset292

(Gohagan et al., 2000) requires 1-4 weeks for access approval due to ethical considerations and patient293

privacy protocols, and the MAGGIC dataset (Pocock et al., 2013) involves stringent access requests.294

Therefore, the need for curating publicly available large datasets with mixed features remains crucial295

for determining the effectiveness of our categorical encoding schemes.296

Curation of a Large-Scaled Mixed Synthetic Dataset. A considerably larger dataset is the US297

Census Data (1990) (Meek et al., 2001) which contains 2, 458, 285 samples and 61 features. However,298

these samples consist of only categorical variables. To incorporate continuous features, we begin299

by converting ordinal categorical features into continuous features. With the remaining non-ordinal300

categorical features, we select a subset and convert them to continuous using Frequency Encoding.301

Lastly, we leverage a synthetic data generation model (Chen et al., 2018; Si et al., 2023) to create302

continuous composite indicators (OECD et al., 2008) that can help capture interactions between303
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Figure 4: Synthetic Data Quality vs. Sampling Speed of TabUnite (i2bFlow/dicFlow), TabSYN and
TabDDPM on the Adult dataset. TabUnite converges to its best AUC/Average Error in much fewer
NFEs when compared to TabSyn and TabDDPM.

different aspects of the data. The synthetic continuous data are then generated per the following two304

polynomials: Syn1 = exp(xixj) and Syn2 = exp(
∑3

i=1(x
2
i −4)) before applying a logistic function305

1
1+logit(X) . Finally, we concatenate our synthesised continuous features with the categorical. We306

have now constructed a Census Synthetic dataset comprised of 41 continuous features, 40 categorical307

features and 2, 458, 285 samples. For a regression task, the label is “dIncome1” which is the annual308

income of an individual. Further details can be found in Appendix C.1.309

Analysis. As observed in Table 2, both TabUnite methods achieve the highest ranking performances310

in both datasets across all the benchmarks. Solely comparing the performance of our encoding311

methods, we observed that our “i2b{}” ({} refers to either Flow or DDPM) and “dic{}” encoding312

schemes outperform separated modelling (Tab{}) and one-hot encoding (ohe{}) in almost all metrics.313

Focusing on the “Beijing” dataset, TabUnite-dicFlow outperforms TabUnite-i2bFlow in 3/5 metrics.314

We hypothesise that since “Beijing” contains “combined wind direction” as an ordinal categori-315

cal feature, TabUnite-dicFlow should be able to outperform TabUnite-i2bFlow in several metrics316

depending on the feature’s importance. Within our “Census Synthetic” dataset, we observe that317

TabUnite-i2bFlow dominates the performance when compared to TabUnite-dicFlow. This is because318

“Census Synthetic” contains no ordinal categorical features after converting them to continuous ones319

hence, it is rational for Analog Bits to have a better performance. On the other hand, comparing the320

performance of the generative models (Flow Matching vs. Diffusion) i.e. []Flow methods vs []DDPM321

methods ([] refers to either i2b, dic, Tab or ohe), Flow Matching achieves a superior performance.322

Additionally, we also investigate the sampling speed of our flow-based methods against TabSyn and323

TabDDPM. As shown in Figure 4, we observe that TabUnite converges to its best AUC/Average Error324

in much fewer NFEs when compared to TabSyn and TabDDPM. Therefore, the TabUnite methods325

have the best sampling efficiency, followed by TabSYN and TabDDPM.326

5 Conclusion and Limitation327

We propose an efficient encoding framework for tabular data generation that leverages effective328

categorical encoding schemes to unify the data space. This enables us to apply a single generative329

model that captures heterogeneous feature interrelationships, improving generation quality. Our330

models are curated by employing Analog Bits and Dictionary encoding that efficiently convert331

categorical variables into a dense and compact continuous representation, before applying Conditional332

Flow Matching to generate the data. To further strengthen our findings on our categorical embedding333

schemes, we curate a large-scale heterogeneous tabular dataset. Relative to the baselines, our334

TabUnite models outperform them across a wide range of datasets whilst evaluated on a broad suite of335

benchmarks. Additionally, leveraging Flow Matching greatly bolsters our sampling efficiency, saving336

computational cost and time. Overall, we justify our claim of applying efficient encoding methods to337

enable the application of a single/unified generative model on a coherent data space. A limitation of338

our methodology is that we have not extensively explored a continuous embedding scheme where we339

perform the reverse and unify the generative space into a categorical one. Inspired by (Ansari et al.,340

2024), we conduct initial explorations of time series tokenization to embed continuous features yet,341

our results are still inconclusive and left to future work.342
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A Algorithms502

Algorithms 1 and 2 describe the training and sampling Flow Matching process of TabUnite. For more503

information regarding Flow Matching, please refer to “Flow Matching for Generative Modeling"504

(Lipman et al., 2022) or “Improving and Generalizing Flow-Based Generative Models with Minibatch505

Optimal Transport" (Tong et al., 2023).506

Algorithm 1 TabUnite: Training Flow Matching using CFM

1: Sample initial data points x1 ∼ q(x1)
2: Initialize vector field vt(x) and parameters θ
3: while not converged do
4: Sample time step t ∼ U([0, 1])
5: Sample x ∼ pt(x|x1)
6: Calculate true vector field ut(x|x1) as per Eq. 3
7: Compute loss LCFM (θ) = E|vt(x)− ut(x|x1)|2
8: Update θ using gradient descent to minimize LCFM (θ)
9: end while

Algorithm 2 TabUnite: Sampling Flow Matching using CFM

1: Sample x ∼ N (0, I) (start with the noise distribution)
2: Set tmax = T and initialize xT = x
3: for i = T, . . . , 1 do
4: Use ψt to map xT to xti−1

using the learned vector field ut
5: Compute xti−1

with ψti(xT ) = σti(x1)xT + µti(x1)
6: Update xT = xti−1

7: end for
8: x0 is a synthetic sample generated by CFM
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B Architecture507

B.1 Flow Matching MLP508

Figure 5 illustrates the MLP architecture used as part of our Flow Matching network, also used in509

TabDDPM (Kotelnikov et al., 2023) and TabSYN (Zhang et al., 2023), which is based on Gorishniy510

et al. (2023).511

Hidden	Layers

𝑥!

Draw	a	sample	from	
probability	path	

𝒩(𝑡 5 𝑥! + (1 − 𝑡) 5 𝑥", 𝜎#	)

Input	layer Output	layer

𝑡ABC

h1 h2 h3 h4 𝑣#ℎ𝑖𝑛 ℎ&'(

vector	field

Figure 5: The MLP architecture used in the Flow Matching process. The neural network takes in a
batch of samples drawn from the probability path at time t’s sampled from U(0, 1) to create a vector
field vθ that represents a continuous normalizing flow from pure noise to our data distribution p1(x1).

The input layer projects the batch of tabular data input samples xt, each with dimension din, to the512

dimensionality dt of our time step embeddings temb through a fully connected layer. This is so that513

we may leverage temporal information, which is appended to the result of the projection in the form514

of sinusoidal time step embeddings.515

hin = FCdt
(xt) + temb (5)

The hidden layers h1, h2, h3, and h4 are fully connected networks used to learn and create the vector516

field. The output dimension of each layer is chosen as dt, 2dt, 2dt, and dt respectively. On top of the517

FC networks, each layer also consists of an activation function followed by dropout, as seen in the518

formulas below. This formulation is repeated for each hidden layer, at the end of which we obtain519

hout. The exact activations, dropout, and other hyperparameters chosen are shown in Table 3.520

h1 = Dropout(Activation(FC(hin))) (6)

At last, the output layer transforms hout, of dimension temb back to dimension din through a fully521

connected network, which now represents the vector field vθ.522

vθ = FCdin
(hout) (7)

B.2 Hyperparameters523

We generally utilise the same hyperparameters as TabSYN (Zhang et al., 2023) and TabDDPM524

(Kotelnikov et al., 2023) for comparability. The exact hyperparameters selected for our models are525

shown below in Table 3.526

Table 3: TabUnite Hyperparameters.
General Flow Matching MLP

Hyperparameter Value Hyperparameter Value

Training Iterations 100,000 Timestep embedding dimension dt 1024
Flow Matching Timesteps 1,000 Activation ReLU
Learning Rate 1e−4 Dropout 0.0
Weight Decay 5e−4 Hidden layer dimension [h1, h2, h3, h4] [1024, 2048, 2048, 1024]
Batch Size 4096
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C Experimental Details527

The following delineates the foundation of our experiments:528

• Codebase: Python & PyTorch529

• GPU: Nvidia RTX 3090, 24GB VRAM530

• Optimizer: Adam (Kingma & Ba, 2014)531

Experiment Table Details532

For Tables 1 and 2, the Overall Rank is calculated by first ranking them individually within each533

benchmark (row-wise), then averaging their ranks for each method across the benchmarks (column-534

wise), before rounding the ranks to the nearest integer.535

In Table 1 and Appendix Tables, all reported results of baselines in our experiments are taken from536

Zhang et al. (2023), except for TabSYN and TabDDPM, whose results are reproduced utilising the537

public repository: https://github.com/amazon-science/tabsyn. Additionally, for Table 1,538

we decided to rerun GReaT in the same original setting (1 Train, 20 Samples) for the Adult dataset539

as TabSYN’s reported results (0.913 ± 0.003) were unusually high. All reported results follow540

TabSYN’s 1 Training and 20 Sampling trial setting. Note that TabDDPM collapses on the News541

dataset for all the benchmarks.542

In Table 2, we limit ourselves to only one real-world dataset + our curated “Census Synthetic” dataset.543

Additionally, we computed 1 Training and 3 Sampling trials for our error bars. Lastly, Pair-Wise544

Column Correlation for the “Census Synthetic” dataset is evaluated on a 10% subsample. These545

reasons are due to the fact that it is computationally costly to compute results for the diffusion-based546

models.547

C.1 Datasets548

Real World Datasets549

Experiments were conducted with a total of 6 tabular datasets from the UCI Machine Learning550

Repository (Dua & Graff, 2017) with a (CC-BY 4.0) license. Classification tasks were performed551

on the Adult, Default, Magic, and Shoppers datasets, while regression tasks were performed on the552

Beijing and News datasets. Each dataset was split into training, validation, and testing sets with a553

ratio of 8:1:1, except for the Adult dataset, whose official testing set was used and the remainder554

split into training and validation sets with an 8:1 ratio. The resulting statistics of each dataset are555

shown below in Table 4. Note that the target column indicates the specific operation applied to each556

dataset: binary classification for a categorical target with two classes, multiclass classification for a557

categorical target with more than two classes, and regression for a numerical target feature. Some558

detailed information as well as the statistics of the datasets are shown in Tables 4 and 5 respectively.

Table 4: Statistics of datasets. "# Num" stands for the number of numerical columns, and "# Cat"
stands for the number of categorical columns.

Dataset # Rows # Num # Cat # Train # Validation # Test Task Type

Adult 48, 842 6 9 28, 943 3, 618 16, 281 Binary Classification
Default 30, 000 14 11 24, 000 3, 000 3, 000 Binary Classification
Shoppers 12, 330 10 8 9, 864 1, 233 1, 233 Binary Classification
Magic 19, 019 10 1 15, 215 1, 902 1, 902 Binary Classification
Beijing 43, 824 7 5 35, 058 4, 383 4, 383 Regression
News 39, 644 46 2 31, 714 3, 965 3, 965 Regression
Census Synthetic 2, 458, 285 41 40 1, 966, 621 245, 827 245, 829 Regression

559

Synthetic Toy Datasets560

Qualitative Toy Dataset: The dataset consists of four columns, with the first two columns representing561

numerical data point coordinates. Subsequently, the third column categorizes the data points into562

five circles whereas the last column indicates the 5 colours each data point can be classified into.563
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Table 5: Details of datasets. The "Feature Information" column details the contents of the dataset and
how it is curated. The "Prediction Task" column describes the model’s objective on that dataset.

Dataset Feature Information Prediction Task

Adult Demographic and occupational variables
from census data

Whether an individual’s income exceeds
$50,000

Default Demographic and account-specific data
collected from credit card clients

Whether an individual will default on their
credit card payments next month

Shoppers Internet users’ browser session informa-
tion

Whether the user will engage in online
shopping

Magic Generated events simulating the imaging
of gamma-ray air showers

Predict the type of high-energy gamma
particles in the atmosphere

Beijing Hourly atmospheric PM2.5 and meteoro-
logical data readings at the U.S. Embassy
in Beijing

Predict future PM2.5 readings

News Various features from the news site Mash-
able’s published articles

The number of "shares" articles will have
on social media

Census Synthetic 1990 Census Demographics of the US
Population

Annual Income of an individual

Therefore, each row in the dataset contains 2 numerical features and 2 categorical features. A total of564

10, 000 samples are generated for this dataset.565

Quantitative Toy Dataset: To quantify our model’s ability to generate high-quality data, we generate566

a synthetic toy dataset with 11 numerical features, all drawn from a unit Gaussian distribution, to567

represent a complex underlying data distribution. From these numerical features, we derive six568

categorical variables by applying a variety of transformations, the details of which are described by569

the equations below.570

571

xcat1 = xnum0 · xnum1

xcat2 = (xnum2 )2 + (xnum3 )2 + (xnum4 )2 + (xnum5 )2 − 4

xcat3 = −10 · sin(2 · xnum6 ) + 2 · |xnum7 |+ xnum8 − e−xnum
9

xcat4 = (xnum9 < 0) · xcat1 + (1− (xnum9 < 0)) · xcat2

xcat5 = (xnum9 < 0) · xcat1 + (1− (xnum9 < 0)) · xcat3

xcat6 = (xnum9 < 0) · xcat2 + (1− (xnum9 < 0)) · xcat3

(8)

Following the transformations, tanh activation functions are applied followed by digitization to 10572

separate bins. A total of 10, 000 samples are generated for this dataset, resulting in our discrete573

categorical variables. We quantify the performance of our models by examining the fidelity of574

generating these categorical variables. The scoring is determined by taking the absolute value of the575

difference between the real and synthesized values.576

We perform three trial experiments for each method and report their mean and standard deviation.577

Note that in the quantitative experiments, we use a DDIM sampler for TabDDPM thus, the results are578

slightly worse than those we reported in our previous tables.579

Census Synthetic Dataset580

The US Census Data (1990) (Meek et al., 2001) ((CC-BY 4.0) license) contains 2, 458, 285 samples581

and 61 features (excluding “dIncome2” to “dIncome8” since they are redundant). However, these582

samples consist of only categorical variables. To incorporate continuous features, we begin by583

converting the following ordinal categorical features into continuous features:584

• Annual income: dIncome1585

• Earnings from employment: dRearning586

• Age: dAge587
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• English proficiency: iEnglish588

• Hours worked in 1989: dHour89589

• Hours worked per week: dHours590

• Travel time to work: dTravtime591

• Years spent schooling: iYearsch592

• Years spent working: iYearwrk593

A total of 9 ordinal categorical features are converted. With the remaining non-ordinal categorical594

features, we select 12 additional categorical features and convert them to continuous using Frequency595

Encoding yielding us 21 continuous features in total. We consider features that are likely to have596

a variety of categories and could benefit from a frequency-based transformation. For instance,597

occupation covers a wide range of jobs and ancestry covers many different backgrounds. The features598

are as follows:599

• Primary ancestry: dAncstry1600

• Secondary ancestry: dAncstry2601

• Citizenship status: iCitizen602

• Marital status: iMarital603

• Hispanic origin: dHispanic604

• Class of worker: iClass605

• Place of birth: dPOB606

• Occupation: dOccup607

• Industry: dIndustry608

• Mobility status: iMobility609

• Relationship to head of household: iRelat1610

• Sex: iSex611

Lastly, to balance out the remaining categorical features 40 with the 21 continuous ones, we leverage612

a synthetic data generation model (Chen et al., 2018; Yoon et al., 2019; Si et al., 2023) to generate613

20 more continuous features based on the converted continuous features. We create continuous614

composite indicators (OECD et al., 2008) by combining our curated continuous features in sets of 2615

or 3 that can help capture interactions and relationships between different aspects of the data. An616

example is a gender and earnings indicator that shows income disparities. Here are the composite617

indicators:618

• Work hours (Hours worked per week and Hours worked in 1989): dHours, dHour89619

• Educational attainment with age (Age and Years of schooling): dAge, iYearsch620

• Language skills based on birthplace (English proficiency and Place of birth): iEnglish, dPOB621

• Demographic relationships (Citizenship status and Hispanic origin): iCitizen, dHispanic622

• Commuting patterns (Travel time to work and Years worked): dTravtime, iYearwrk623

• Family structure (Marital status and Relationship to household head): iMarital, iRelat1624

• Employment characteristics (Industry and Occupation): dIndustry, dOccup625

• Income disparities (Gender and Earnings): iSex, dRearning626

• Migration patterns (Mobility status and Citizenship): iMobility, iCitizen627

• Heritage (Primary and Secondary Ancestry): dAncstry1, dAncstry2628

• Career dedication (Hours worked per week, Hours worked in 1989, and Travel time to work):629

dHours, dHour89, dTravtime630

• Career progression (Age, years of schooling, and years worked): dAge, iYearsch, iYearwrk631

• Cultural integration (English proficiency, place of birth, and citizenship): iEnglish, dPOB,632

iCitizen633
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• Household dynamics (Marital status, relationship to household head, and mobility status):634

iMarital, iRelat1, iMobility635

• Job characteristics (Industry, Occupation, and Earnings): dIndustry, dOccup, dRearning636

• Income trends (Gender, Earnings, and Age): iSex, dRearning, dAge637

• Heritage and immigration status (Primary and Secondary heritage, and Citizenship):638

dAncstry1, dAncstry2, iCitizen639

• Demographic patterns (Hispanic origin, Relationship to household head, and Age): dHis-640

panic, iRelat1, dAge641

• Job location and stability (Travel time, Years worked, and Occupation): dTravtime, iYearwrk,642

dOccup643

• Education’s impact on earnings (Years of schooling, Years worked, and Earnings): iYearsch,644

iYearwrk, dRearning645

Before generating these composite indicators, we first apply a Standard scaler to the converted646

continuous features since the input features are "generated from a Gaussian distribution (X ∼647

N(0, I))" (per (Chen et al., 2018)). The synthetic continuous data are then generated according to648

the following two polynomials:649

• Syn1 = exp(XiXj)650

• Syn2 = exp(
∑3

i=1(X
2
i − 4))651

where the first set consists of 10 indicators derived from pairs of variables following Syn1 and652

the second set consists of 10 indicators derived from triples of variables following Syn2. These653

composite indicators are then transformed using the logistic function 1
1+exp(X) . Finally, we merge654

our continuous features with the categorical features to create a comprehensive “Census Synthetic”655

dataset. The “Census Synthetic” dataset we construct comprises of 41 continuous features, 40656

categorical features and 2, 458, 285 samples. For a regression task, the label is “dIncome1” which is657

the Annual income of an individual. Note that the dataset will be released with a CC-BY 4.0 license.658

C.2 Additional Details on Baselines: Predefined Models.659

TabUnite’s performance is evaluated in comparison to previous works in mixed-type tabular data660

generation. This includes CTGAN and TVAE (Xu et al., 2019), GOGGLE (Liu et al., 2023), GReaT661

(Borisov et al., 2023), STaSy (Kim et al., 2022), CoDi (Lee et al., 2023), TabDDPM (Kotelnikov662

et al., 2023), and TabSYN (Zhang et al., 2023). The underlying architectures and implementation663

details of these models are presented below in Table 7.664

C.3 Additional Details on Ablations: Encoding schemes and generative models665

(Flow/Diffusion).666

On top of the models developed by previous related works in mixed-type tabular data synthesis, we667

developed baselines that would provide a direct and analogous comparison to justify flow-matching668

and our particular encoding methods. This includes the flow-matching-based one-hotFlow (oheFlow),669

TabFlow, and the DDPM-based i2bDDPM, dicDDPM, and one-hotDDPM (oheDDPM).670

Our DDPM-based baseline methods (i2bDDPM, dicDDPM, and oheDDPM) primarily inherit the671

design and implementation of TabDDPM (Kotelnikov et al., 2023). Whereas TabDDPM leverages672

two separate diffusion models, namely Gaussian diffusion and Multinomial diffusion, we devise673

i2bDDPM, dicDDPM, and oheDDPM to rely solely on Gaussian Diffusion. This is because their674

corresponding methods of Analog Bits, Dictionary Encoding, and One-Hot Encoding allow us675

to perform diffusion in a unified data space. Implementation of these methods is done by simply676

altering the data processing stage of the model. The DDPM architecture is largely kept the same.677

678

Our Flow-based baseline methods (oheFlow, TabFlow) are extended from the TabUnite architecture,679

which consists of i2bFlow and dicFlow. oheFlow, as the name suggests, utilizes One-Hot Encoding680

in its data processing stage. Tabflow, on the other hand, mirrors the idea of TabDDPM in that two681

separate models are used: one for learning categorical features and the other for learning numerical682
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Table 7: Comparison of previous methods in Tabular Data Synthesis.

Method Model1 Type2 Categorical
Encoding

Numerical
Encoding

Additional Techniques

CTGAN GAN U One-Hot
Encoding

Scaled Bayesian
Gaussian Mixture

Mode-specific normalization
to represent complex distribu-
tions & conditional generation
to address data imbalances

TVAE VAE U One-Hot
Encoding

Scaled Bayesian
Gaussian Mixture

Mode-specific normalization
& conditional generation

GOGGLE VAE + GNN U One-Hot
Encoding

- Learning relational structures
among features graphically
through an adjacency matrix

GReaT Autoregressive
GPT

U Byte-Pair
Encoding3

Byte-Pair
Encoding3

Textual Encoder which con-
verts data into natural lan-
guage, followed by Feature
Order Permutation and Fine-
tuning

STaSy Score-based
Diffusion

U One-Hot
Encoding

Min-max scaler Self-paced learning and fine-
tuning

CoDi DDPM/
Multinomial
Diffusion

S One-Hot
Encoding

Min-max scaler Model Inter-conditioning and
Contrastive learning to learn
dependencies between cate-
gorical and numerical data

TabDDPM DDPM/
Multinomial
Diffusion

S One-Hot
Encoding

Quantile
Transformer

Concatenation of numerical
and categorical features

TabSYN VAE + EDM U One-Hot Quantile
Transformer

Feature Tokenizer and Trans-
former encoder to learn
cross-feature relationships
with adaptive loss weighing
to increase reconstruction
performance

TabUnite-i2BFlow Flow Match-
ing

U Analog
Bits

Quantile
Transformer

Concatenation of numerical
and categorical features en-
coded with TabUnite’s embed-
ding scheme

TabUnite-dicFlow Flow Match-
ing

U Dictionary Quantile
Transformer

Concatenation of numerical
and categorical features en-
coded with TabUnite’s embed-
ding scheme

1 The ’Model’ Column indicates the underlying architecture used for the model. Options include Generative
Adversarial Networks or GANs (Goodfellow et al., 2014), Variational Autoencoders or VAEs (Kingma
& Welling, 2013), Denoising Diffusion Probabilistic Models or DDPMs (Ho et al., 2020), Multinomial
Diffusion (Hoogeboom et al., 2021), EDM, as introduced in Karras et al. (2022).

2 The ’Type’ column indicates the data integration approach used in the model. ’U’ denotes a unified data
space where numerical and categorical data are combined after initial processing and fed collectively into
the model. ’S’ represents a separated data space, where numerical and categorical data are processed and fed
into distinct models.

3 Byte-Pair Encoding (Sennrich et al., 2016) is a tokenization method that iteratively merges the most frequent
adjacent characters or character pairs into single tokens, creating a vocabulary of subwords that efficiently
handles rare and unknown words in text processing.
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features. Here, the implementation combines ordinary Flow Matching (Lipman et al., 2022) with683

Discrete Flow Matching (Campbell et al., 2024). The respective results of these two models are684

concatenated afterward to allow for the synthesis of mixed-type tabular data.685

686

These methods all utilize the QuantileTransformer (Pedregosa et al., 2011) to process numerical data,687

which normalizes features to follow a uniform or normal distribution. This is done through sorting688

and ranking data points, and then mapping them to fit to the target distribution.689

C.4 Benchmarks690

In this section, we expand on the concrete formulations behind our benchmarks including machine691

learning efficiency, low-order statistics, and high-order metrics. We also provide an overview on the692

detection and privacy metrics used in our experiments. These comprehensive benchmarks as well as693

their implementations are identical to those established by TabSYN (Zhang et al., 2023), ensuring a694

direct and accurate comparison.695

Machine Learning Efficiency696

AUC (Area Under Curve) is used to evaluate the efficiency of our model in binary classification tasks.697

It measures the area under the Receiver Operating Characteristic (or ROC) curve, which plots the698

True Positive Rate against the False Positive Rate. AUC may take values in the range [0,1]. A higher699

AUC value suggests that our model achieves a better performance in binary classification tasks and700

vice versa.701

AUC =

∫ 1

0

TPR(FPR) d(FPR) (9)

RMSE (Root Mean Square Error) is used to evaluate the efficiency of our model in regression tasks.702

It measures the average magnitude of the deviations between predicted values (ŷi) and actual values703

(yi). A smaller RMSE model indicates a better fit of the model to the data.704

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (10)

Low-Order Statistics.705

Column-wise Density Estimation between numerical features is achieved with the Kolmogorov-706

Smirnov Test (KST). The Kolmogorov-Smirnov statistic is used to evaluate how much two underlying707

one-dimensional probability distributions differ, and is characterized by the below equation:708

KST = sup
x

|F1(x)− F2(x)|, (11)

where Fn(x), the empirical distribution function of sample n is calculated by709

Fn(x) =
1

n

n∑
i=1

1(−∞,x](Xi) (12)

710

Column-wise Density Estimation between two categorical features is determined by calculating711

the Total Variation Distance (TVD). This statistic captures the largest possible difference in the712

probability of any event under two different probability distributions. It is expressed as713

TVD =
1

2

∑
x∈X

|P1(x)− P2(x)|, (13)

where P1(x) and P2(x) are the probabilities (PMF) assigned to data point x by the two sample714

distributions respectively.715

716

Pair-wise Column Correlation between two numerical features is computed using the Pearson717

Correlation Coefficient (PCC). It assigns a numerical value to represent the linear relationship718
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between two columns, ranging from -1 (perfect negative linear correlation) to +1 (perfect positive719

linear correlation), with 0 indicating no linear correlation. It is computed as:720

ρ(x, y) =
cov(x, y)

σxσy
, (14)

To compare the Pearson Coefficients of our real and synthetic datasets, we quantify the dissimilarity721

in pair-wise column correlation between two samples722

Pearson Score =
1

2
Ex,y|ρ1(x, y)− ρ2(x, y)| (15)

Pair-wise Column Correlation between two categorical features in a sample is characterized by723

a Contingency Table. This table is constructed by tabulating the frequencies at which specific724

combinations of the levels of two categorical variables work and recording them in a matrix format.725

To Quantify the dissimilarity of contingency matrices between two different samples, we use the726

notion of the Contingency Score.727

Contingency Score =
1

2

∑
α∈A

∑
β∈B

|P1,(α,β) − P2,(α,β)|, (16)

where α and β describe possible categorical values that can be taken in features A and B. P1,(α,β)728

and P2,(α,β) refer to the contingency tables representing the features α and β in our two samples,729

which in this case corresponds to the real and synthetic datasets.730

In order to obtain the column-wise density estimation and pair-wise correlation between a categorical731

and a numerical feature, we bin the numerical data into discrete categories before applying TVD and732

Contingency score respectively to obtain our low-order statistics.733

We utilize the implementation of these experiments as provided by the SDMetrics library1.734

High-Order Statistics735

We utilize the implementations of High-Order Statistics as provided by the synthcity2 library.736

737

α-precision measures the overall fidelity of the generated data and is an extension of the738

classical machine learning quality metric of "precision". This formulation is based on the assumption739

that α fraction of our real samples are characteristic of the original data distribution and the rest are740

outliers. α-precision therefore quantifies the percentage of generated synthetic samples that match α741

fraction of real samples (Alaa et al., 2022).742

743

β-recall characterizes the diversity of our synthetic data and is similarly based on the qual-744

ity metric of "recall". β-recall shares a similar assumption as α-precision, except that we now assume745

that β fraction of our synthetic samples are characteristic of the distribution. Therefore, this measure746

obtains the fraction of the original data distribution that is represented by the β fraction of our747

generated samples (Alaa et al., 2022).748

Detection Metric: Classifier Two-Sample Test (C2ST)749

The Classifier Two-Sample Test, a detection metric, assesses the ability to distinguish real data from750

synthetic data. This is done through a machine learning model that attempts to label whether a data751

point is synthetic or real. The score ranges from 0 to 1 where a score closer to 1 is superior, as752

it indicates that the machine learning model cannot concretely identify whether the data point in753

question is real or generated. We select logistic regression as our machine learning model in this case,754

using the implementation provided by SDMetric (SDMetrics, 2024).755

Privacy Metric: Distance to Closest Record (DCR)756

The Distance to Closest Record metric quantifies the distance between each generated sample to our757

training set. The score is calculated as the proportion of synthetic data points that have a closer match758

1https://github.com/sdv-dev/SDMetrics
2https://github.com/vanderschaarlab/synthcity
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to the real data set compared to the holdout set. A score close to 50% is ideal, as it indicates that our759

generated sample represents the underlying distribution of our training samples without revealing760

specific points present in the dataset.761
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D Further Experimental Results762

We run all experiments outlined in this section on at least 4 main models: TabUnite-i2bFlow,763

TabUnite-dicFlow, TabSYN(Zhang et al., 2023), and TabDDPM(Kotelnikov et al., 2023) due to their764

competitive performance on our MLE experiments as seen in Table 1 as well as prior literature (Zhang765

et al., 2023). Unless otherwise stated, we use experimental results collected by TabSYN’s author for766

all other model benchmarks. The metrics and error bars shown in the tables in this section are derived767

from the mean and standard deviation of experiments performed on 20 randomly sampled sets of768

synthetic data.769

D.1 Training and Sampling Time770

We showcase the training and sampling durations for TabUnite and other competitive diffusion-based771

baseline models obtained from our experiments in this section. Experiments for all datasets outlined772

in table Table 9 are performed in the computing environment described in section Appendix C. For773

the two TabUnite methods (i2bFlow and dicFlow) and the flow-matching-based baseline TabFlow,774

we use the hyperparameters as specified in Table 3. For all non-TabUnite methods, we follow the775

recommended parameters set forth by their respective authors, see (Kim et al., 2022), (Lee et al.,776

2023), (Kotelnikov et al., 2023), and (Zhang et al., 2023).

Table 9: Training and Sampling Times of TabUnite and baselines on the Beijing Dataset. The
hyperparameters used to run these experiments are included in Table 3.

Model Training
Time (s)

Training
Steps

Training
Time/step (s)

Sampling
Time (s)

STaSy 8029.92 10,000 0.803 17.39
CoDi 30342.05 20,000 1.517 11.15
TabDDPM 4188.56 100,000 0.042 73.82
TabSYN 3671.48 4,000+625 0.509 5.97
TabFlow 6772.25 100,000 0.068 3.87

TabUnite-i2bFlow 5182.89 100,000 0.052 3.80
TabUnite-dicFlow 4380.02 100,000 0.044 3.40

777
Note that for TabSYN, the VAE is trained for 4000 steps, taking 3352.70 seconds to complete. Early778

stopping when training the EDM model is reached at 625/10001 epochs, finishing in an additional779

318.78 seconds. The training times presented in the figure are the sum of the times required to780

complete training on both the VAE and diffusion models.781

782

D.2 Low-order statistics: Column-wise density estimation and Pair-wise column correlation783

The results for our Low-Order metrics tests can be found in Table 10 and Table 11.784

Table 10: Error rate (%) of column-wise density estimation.Values bolded in red and blue are the
best and second best-performing models respectively for each dataset.

Method Adult Default Shoppers Magic Beijing News Overall Rank

SMOTE 1.60±0.23 1.48±0.15 2.68±0.19 0.91±0.05 1.85±0.21 5.31±0.46 N/A

CTGAN 16.84± 0.03 16.83±0.04 21.15±0.10 9.81±0.08 21.39±0.05 16.09±0.02 8
TVAE 14.22±0.08 10.17±0.05 24.51±0.06 8.25±0.06 19.16±0.06 16.62±0.03 7
GOGGLE 16.97 17.02 22.33 1.90 16.93 25.32 6
GReaT 12.12±0.04 19.94±0.06 14.51±0.12 16.16±0.09 8.25±0.12 OOM 9
STaSy 11.29±0.06 5.77±0.06 9.37±0.09 6.29±0.13 6.71±0.03 6.89±0.03 4
CoDi 21.38±0.06 15.77± 0.07 31.84±0.05 11.56±0.26 16.94±0.02 32.27±0.04 10
TabDDPM 1.37±0.05 2.06±0.06 4.49±0.09 2.64±0.19 49.25±0.13 75.11±0.03 4
TabSYN 3.96±0.08 2.90± 0.04 2.56±0.07 2.65±0.12 2.24±0.04 5.74±0.05 3

TabUnite-i2bFlow 1.19±0.05 2.17±0.09 3.19±0.10 2.54±0.20 2.49±0.04 2.81±0.03 1
TabUnite-dicFlow 1.64±0.06 2.70± 0.07 3.14±0.07 3.09±0.19 2.10±0.06 3.31±0.04 2
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Table 11: Error rate (%) of pair-wise column correlation score. Values bolded in red and blue are the
best and second best-performing models respectively for each dataset.

Method Adult Default Shoppers Magic Beijing News Overall Rank

SMOTE 3.28±0.29 8.41±0.38 3.56±0.22 3.16±0.41 2.39±0.35 5.38±0.76 N/A

CTGAN 20.23±1.20 26.95±0.93 13.08±0.16 7.00±0.19 22.95±0.08 5.37±0.05 7
TVAE 14.15±0.88 19.50±0.95 18.67±0.38 5.82±0.49 18.01±0.08 6.17±0.09 6
GOGGLE 45.29 21.94 23.90 9.47 45.94 23.19 9
GReaT 17.59±0.22 70.02±0.12 45.16±0.18 10.23±0.40 59.60±0.55 OOM 10
STaSy 14.51±0.25 5.96±0.26 8.49±0.15 6.61±0.53 8.00±0.10 3.07±0.04 4
CoDi 22.49±0.08 68.41±0.05 17.78±0.11 6.53±0.25 7.07±0.15 11.10±0.01 7
TabDDPM 2.67±0.05 13.56± 0.16 11.89±0.09 2.27±0.09 50.76±0.08 15.65±0.23 5
TabSYN 6.64±0.15 12.44± 1.02 6.45±0.08 3.19±0.12 5.80±0.13 4.16±0.03 3

TabUnite-i2bFlow 2.95±0.37 11.69± 1.19 6.04±0.55 3.18±0.46 5.71±0.10 2.48±0.03 1
TabUnite-dicFlow 3.63±0.35 11.46±1.78 7.28±0.33 3.28±0.45 5.65±0.13 2.74±0.09 2

D.3 High-order metrics: α-precision and β-recall785

The results for our High-Order metrics tests can be found in Table 12 and Table 13.786

Note that similar to the results obtained in TabSYN’s paper, TabDDPM also collapses on the News787

dataset in our experiments.788

Table 12: Comparison of α-Precision scores. Higher values indicate superior results. Values bolded
in red and blue are the best and second best-performing models respectively for each dataset.

Methods Adult Default Shoppers Magic Beijing News Overall Rank

CTGAN 77.74±0.15 62.08±0.08 76.97±0.39 86.90±0.22 96.27±0.14 96.96±0.17 8
TVAE 98.17±0.17 85.57±0.34 58.19±0.26 86.19±0.48 97.20±0.10 86.41±0.17 7
GOGGLE 50.68 68.89 86.95 90.88 88.81 86.41 10
GReaT 55.79±0.03 85.90±0.17 78.88±0.13 85.46±0.54 98.32±0.22 - 8
STaSy 82.87±0.26 90.48±0.11 89.65±0.25 86.56±0.19 89.16±0.12 94.76±0.33 5
CoDi 77.58±0.45 82.38±0.15 94.95±0.35 85.01±0.36 98.13±0.38 87.15±0.12 6
TabDDPM 94.79±0.27 98.27±0.34 98.33±0.40 93.35±0.53 0.01±0.73 0.00±0.00 4
TabSYN 98.51±0.31 98.73±0.20 98.80±0.36 98.01±0.30 97.30±0.30 97.98±0.08 3

TabUnite-i2bFlow 99.42±0.13 97.08±0.33 98.78±0.47 99.10±0.20 97.60±0.27 98.77±0.39 1
TabUnite-dicFlow 99.27±0.2 96.16±0.34 97.34±0.55 99.27±0.19 98.90±0.22 98.47±0.29 2

Table 13: Comparison of β-Recall scores. Higher values indicate superior results. Values bolded in
red and blue are the best and second best-performing models respectively for each dataset.

Methods Adult Default Shoppers Magic Beijing News Overall Rank

CTGAN 30.80±0.20 18.22±0.17 31.80±0.350 11.75±0.20 34.80±0.10 24.97±0.29 9
TVAE 38.87±0.31 23.13±0.11 19.78±0.10 32.44±0.35 28.45±0.08 29.66±0.21 8
GOGGLE 8.80 14.38 9.79 9.88 19.87 2.03 10
GReaT 49.12±0.18 42.04±0.19 44.90±0.17 34.91±0.28 43.34±0.31 - 6
STaSy 29.21±0.34 39.31±0.39 37.24±0.45 53.97±0.57 54.79±0.18 39.42±0.32 4
CoDi 9.20±0.15 19.94±0.22 20.82±0.23 50.56±0.31 52.19±0.12 34.40±0.31 7
TabDDPM 50.74±0.37 46.90±0.35 53.32±0.52 46.26±0.35 0.02±0.68 0.00±0.00 5
TabSYN 45.13±0.23 44.30±0.29 48.68±0.57 45.28±0.40 55.50±0.21 35.70±0.18 3

TabUnite-i2bFlow 48.49±0.17 47.43±0.33 54.47±0.57 67.60±0.28 60.34±0.20 50.89±0.27 2
TabUnite-dicFlow 51.34±0.25 50.75±0.34 52.24±0.59 66.93±0.19 60.66±0.21 50.07±0.29 1
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D.4 Detection metric: Classifier Two-Sample Test (C2ST)789

The results for our C2ST tests can be found in Table 14. We are generally competitive with TabSYN790

and TabDDPM.791

Table 14: Comparison of C2ST scores. Higher values indicate superior results. Values bolded in red
and blue are the best and second best-performing models respectively for each dataset.

Methods Adult Default Shoppers Magic Beijing News Overall Rank

CTGAN 0.5949 0.4875 0.7488 0.6728 0.7531 0.6947 7
TVAE 0.6315 0.6547 0.2962 0.7706 0.8659 0.4076 5
GOGGLE 0.1114 0.5163 0.1418 0.9526 0.4779 0.0745 8
GReaT 0.5376 0.4710 0.4285 0.4326 0.6893 - 9
STaSy 0.4054 0.6814 0.5482 0.6939 0.7922 0.5287 6
CoDi 0.2077 0.4595 0.2784 0.7206 0.7177 0.0201 10
TabDDPM 0.1263 0.9844 0.8545 0.9951 0.0380 0.0000 4
TabSYN 0.9235 0.9664 0.9516 0.9526 0.8937 0.7934 1

TabUnite-i2bFlow 0.7180 0.9407 0.8538 0.9304 0.9304 0.9005 3
TabUnite-dicFlow 0.9004 0.9275 0.9176 0.9514 0.9477 0.8784 2

D.5 Privacy metric: Distance to Closest Record792

The results for our DCR tests can be found in Table 15. As observed, we remain competitive but do793

not outperform TabSYN as the best method under this metric. This aligns with our hypothesis where794

TabSYN leverages a latent space thus, resulting in a lossy compression, improving their DCR scores.

Table 15: Comparison of DCR. Results closer to 50% indicate better performance on the test. Values
bolded in red and blue are the best and second best-performing models respectively for each dataset.

Methods Adult Default Shoppers Magic Beijing News Overall Rank

TabDDPM 81.92±0.13 64.05±0.18 91.49±0.07 63.51±0.47 82.44±0.09 59.09±0.16 0.00
TabSYN 51.67±0.35 50.87±0.17 52.05±0.88 52.10±0.39 51.55±0.38 50.72±0.25 0.0

TabUnite-i2bFlow 53.87±0.27 52.96±0.44 59.66±0.54 83.71±0.28 54.33±0.65 55.81±0.11 0.00
TabUnite-dicFlow 65.35±0.04 57.79±0.26 72.16±0.65 82.90±0.46 60.97±0.25 55.76±0.51 0.00

795
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NeurIPS Paper Checklist796

1. Claims797

Question: Do the main claims made in the abstract and introduction accurately reflect the798

paper’s contributions and scope?799

Answer: [Yes]800

Justification: We elaborate the model architecture as well as encoding methods introduced801

in the abstract in depth in Section 3, with visual diagrams presented in Figure 1 and802

Figure 2. The claims on our model’s performance are backed by Table 1, Table 7 where we803

highlighted the highest-performing models for each dataset, as well as various other results804

in the appendix.805

Guidelines:806

• The answer NA means that the abstract and introduction do not include the claims807

made in the paper.808

• The abstract and/or introduction should clearly state the claims made, including the809

contributions made in the paper and important assumptions and limitations. A No or810

NA answer to this question will not be perceived well by the reviewers.811

• The claims made should match theoretical and experimental results, and reflect how812

much the results can be expected to generalize to other settings.813

• It is fine to include aspirational goals as motivation as long as it is clear that these goals814

are not attained by the paper.815

2. Limitations816

Question: Does the paper discuss the limitations of the work performed by the authors?817

Answer: [Yes]818

Justification: A limitation of our methodology is that we have not extensively explored a819

continuous embedding scheme where we perform the reverse and unify the generative space820

into a categorical one. Inspired by (Ansari et al., 2024), we conduct initial explorations of821

time series tokenization to embed continuous features yet, our results are still inconclusive822

and left to future work.823

Guidelines:824

• The answer NA means that the paper has no limitation while the answer No means that825

the paper has limitations, but those are not discussed in the paper.826

• The authors are encouraged to create a separate "Limitations" section in their paper.827

• The paper should point out any strong assumptions and how robust the results are to828

violations of these assumptions (e.g., independence assumptions, noiseless settings,829

model well-specification, asymptotic approximations only holding locally). The authors830

should reflect on how these assumptions might be violated in practice and what the831

implications would be.832

• The authors should reflect on the scope of the claims made, e.g., if the approach was833

only tested on a few datasets or with a few runs. In general, empirical results often834

depend on implicit assumptions, which should be articulated.835

• The authors should reflect on the factors that influence the performance of the approach.836

For example, a facial recognition algorithm may perform poorly when image resolution837

is low or images are taken in low lighting. Or a speech-to-text system might not be838

used reliably to provide closed captions for online lectures because it fails to handle839

technical jargon.840

• The authors should discuss the computational efficiency of the proposed algorithms841

and how they scale with dataset size.842

• If applicable, the authors should discuss possible limitations of their approach to843

address problems of privacy and fairness.844

• While the authors might fear that complete honesty about limitations might be used by845

reviewers as grounds for rejection, a worse outcome might be that reviewers discover846

limitations that aren’t acknowledged in the paper. The authors should use their best847
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judgment and recognize that individual actions in favor of transparency play an impor-848

tant role in developing norms that preserve the integrity of the community. Reviewers849

will be specifically instructed to not penalize honesty concerning limitations.850

3. Theory Assumptions and Proofs851

Question: For each theoretical result, does the paper provide the full set of assumptions and852

a complete (and correct) proof?853

Answer: [NA]854

Justification: We do not include theoretical results in our paper.855

Guidelines:856

• The answer NA means that the paper does not include theoretical results.857

• All the theorems, formulas, and proofs in the paper should be numbered and cross-858

referenced.859

• All assumptions should be clearly stated or referenced in the statement of any theorems.860

• The proofs can either appear in the main paper or the supplemental material, but if861

they appear in the supplemental material, the authors are encouraged to provide a short862

proof sketch to provide intuition.863

• Inversely, any informal proof provided in the core of the paper should be complemented864

by formal proofs provided in appendix or supplemental material.865

• Theorems and Lemmas that the proof relies upon should be properly referenced.866

4. Experimental Result Reproducibility867

Question: Does the paper fully disclose all the information needed to reproduce the main ex-868

perimental results of the paper to the extent that it affects the main claims and/or conclusions869

of the paper (regardless of whether the code and data are provided or not)?870

Answer: [Yes]871

Justification: Detailed experimental setup, methodologies, and chosen parameters are shown872

in Appendix. We evaluate our models on a variety of metrics and tests. A, B, and C.873

Guidelines:874

• The answer NA means that the paper does not include experiments.875

• If the paper includes experiments, a No answer to this question will not be perceived876

well by the reviewers: Making the paper reproducible is important, regardless of877

whether the code and data are provided or not.878

• If the contribution is a dataset and/or model, the authors should describe the steps taken879

to make their results reproducible or verifiable.880

• Depending on the contribution, reproducibility can be accomplished in various ways.881

For example, if the contribution is a novel architecture, describing the architecture fully882

might suffice, or if the contribution is a specific model and empirical evaluation, it may883

be necessary to either make it possible for others to replicate the model with the same884

dataset, or provide access to the model. In general. releasing code and data is often885

one good way to accomplish this, but reproducibility can also be provided via detailed886

instructions for how to replicate the results, access to a hosted model (e.g., in the case887

of a large language model), releasing of a model checkpoint, or other means that are888

appropriate to the research performed.889

• While NeurIPS does not require releasing code, the conference does require all submis-890

sions to provide some reasonable avenue for reproducibility, which may depend on the891

nature of the contribution. For example892

(a) If the contribution is primarily a new algorithm, the paper should make it clear how893

to reproduce that algorithm.894

(b) If the contribution is primarily a new model architecture, the paper should describe895

the architecture clearly and fully.896

(c) If the contribution is a new model (e.g., a large language model), then there should897

either be a way to access this model for reproducing the results or a way to reproduce898

the model (e.g., with an open-source dataset or instructions for how to construct899

the dataset).900
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(d) We recognize that reproducibility may be tricky in some cases, in which case901

authors are welcome to describe the particular way they provide for reproducibility.902

In the case of closed-source models, it may be that access to the model is limited in903

some way (e.g., to registered users), but it should be possible for other researchers904

to have some path to reproducing or verifying the results.905

5. Open access to data and code906

Question: Does the paper provide open access to the data and code, with sufficient instruc-907

tions to faithfully reproduce the main experimental results, as described in supplemental908

material?909

Answer: [Yes]910

Justification: The code is anonymised and zipped along with our submission.911

Guidelines:912

• The answer NA means that paper does not include experiments requiring code.913

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/914

public/guides/CodeSubmissionPolicy) for more details.915

• While we encourage the release of code and data, we understand that this might not be916

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not917

including code, unless this is central to the contribution (e.g., for a new open-source918

benchmark).919

• The instructions should contain the exact command and environment needed to run to920

reproduce the results. See the NeurIPS code and data submission guidelines (https:921

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.922

• The authors should provide instructions on data access and preparation, including how923

to access the raw data, preprocessed data, intermediate data, and generated data, etc.924

• The authors should provide scripts to reproduce all experimental results for the new925

proposed method and baselines. If only a subset of experiments are reproducible, they926

should state which ones are omitted from the script and why.927

• At submission time, to preserve anonymity, the authors should release anonymized928

versions (if applicable).929

• Providing as much information as possible in supplemental material (appended to the930

paper) is recommended, but including URLs to data and code is permitted.931

6. Experimental Setting/Details932

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-933

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the934

results?935

Answer: [Yes]936

Justification: Data splits can be found in Appendix C.1. We provide a detailed list of our937

hyperparameters in Table 3. We explicitly state in the section that we utilize the same938

parameters as two prior models to ensure that experimental results are commensurable.939

Guidelines:940

• The answer NA means that the paper does not include experiments.941

• The experimental setting should be presented in the core of the paper to a level of detail942

that is necessary to appreciate the results and make sense of them.943

• The full details can be provided either with the code, in appendix, or as supplemental944

material.945

7. Experiment Statistical Significance946

Question: Does the paper report error bars suitably and correctly defined or other appropriate947

information about the statistical significance of the experiments?948

Answer: [Yes]949

Justification: We provide standard deviation error bars for our experimental results when950

permissible. Specifically, this is shown in our tables.951

Guidelines:952
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• The answer NA means that the paper does not include experiments.953

• The authors should answer "Yes" if the results are accompanied by error bars, confi-954

dence intervals, or statistical significance tests, at least for the experiments that support955

the main claims of the paper.956

• The factors of variability that the error bars are capturing should be clearly stated (for957

example, train/test split, initialization, random drawing of some parameter, or overall958

run with given experimental conditions).959

• The method for calculating the error bars should be explained (closed form formula,960

call to a library function, bootstrap, etc.)961

• The assumptions made should be given (e.g., Normally distributed errors).962

• It should be clear whether the error bar is the standard deviation or the standard error963

of the mean.964

• It is OK to report 1-sigma error bars, but one should state it. The authors should965

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis966

of Normality of errors is not verified.967

• For asymmetric distributions, the authors should be careful not to show in tables or968

figures symmetric error bars that would yield results that are out of range (e.g. negative969

error rates).970

• If error bars are reported in tables or plots, The authors should explain in the text how971

they were calculated and reference the corresponding figures or tables in the text.972

8. Experiments Compute Resources973

Question: For each experiment, does the paper provide sufficient information on the com-974

puter resources (type of compute workers, memory, time of execution) needed to reproduce975

the experiments?976

Answer: [Yes]977

Justification: We introduce in Appendix C the computer resources used in our experiments.978

The compute required for experimental runs are detailed in Table 9.979

Guidelines:980

• The answer NA means that the paper does not include experiments.981

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,982

or cloud provider, including relevant memory and storage.983

• The paper should provide the amount of compute required for each of the individual984

experimental runs as well as estimate the total compute.985

• The paper should disclose whether the full research project required more compute986

than the experiments reported in the paper (e.g., preliminary or failed experiments that987

didn’t make it into the paper).988

9. Code Of Ethics989

Question: Does the research conducted in the paper conform, in every respect, with the990

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?991

Answer: [Yes]992

Justification: With have adhered to the NeurIPS Code of Ethics when conducting our993

research on this paper.994

Guidelines:995

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.996

• If the authors answer No, they should explain the special circumstances that require a997

deviation from the Code of Ethics.998

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-999

eration due to laws or regulations in their jurisdiction).1000

10. Broader Impacts1001

Question: Does the paper discuss both potential positive societal impacts and negative1002

societal impacts of the work performed?1003

Answer: [NA]1004
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Justification: Our work on tabular data generation does not include potential malicious or1005

unintended uses or impact specific groups. It does not violate privacy and security concerns1006

either.1007

Guidelines:1008

• The answer NA means that there is no societal impact of the work performed.1009

• If the authors answer NA or No, they should explain why their work has no societal1010

impact or why the paper does not address societal impact.1011

• Examples of negative societal impacts include potential malicious or unintended uses1012

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1013

(e.g., deployment of technologies that could make decisions that unfairly impact specific1014

groups), privacy considerations, and security considerations.1015

• The conference expects that many papers will be foundational research and not tied1016

to particular applications, let alone deployments. However, if there is a direct path to1017

any negative applications, the authors should point it out. For example, it is legitimate1018

to point out that an improvement in the quality of generative models could be used to1019

generate deepfakes for disinformation. On the other hand, it is not needed to point out1020

that a generic algorithm for optimizing neural networks could enable people to train1021

models that generate Deepfakes faster.1022

• The authors should consider possible harms that could arise when the technology is1023

being used as intended and functioning correctly, harms that could arise when the1024

technology is being used as intended but gives incorrect results, and harms following1025

from (intentional or unintentional) misuse of the technology.1026

• If there are negative societal impacts, the authors could also discuss possible mitigation1027

strategies (e.g., gated release of models, providing defenses in addition to attacks,1028

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1029

feedback over time, improving the efficiency and accessibility of ML).1030

11. Safeguards1031

Question: Does the paper describe safeguards that have been put in place for responsible1032

release of data or models that have a high risk for misuse (e.g., pretrained language models,1033

image generators, or scraped datasets)?1034

Answer: [NA]1035

Justification: One of our main contributions, a large mixed-type tabular dataset, is curated1036

from augmenting a public-domain dataset based on anonymised US census data in 19901037

(Dua & Graff, 2017), which poses a very low risk for potential misuse.1038

Guidelines:1039

• The answer NA means that the paper poses no such risks.1040

• Released models that have a high risk for misuse or dual-use should be released with1041

necessary safeguards to allow for controlled use of the model, for example by requiring1042

that users adhere to usage guidelines or restrictions to access the model or implementing1043

safety filters.1044

• Datasets that have been scraped from the Internet could pose safety risks. The authors1045

should describe how they avoided releasing unsafe images.1046

• We recognize that providing effective safeguards is challenging, and many papers do1047

not require this, but we encourage authors to take this into account and make a best1048

faith effort.1049

12. Licenses for existing assets1050

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1051

the paper, properly credited and are the license and terms of use explicitly mentioned and1052

properly respected?1053

Answer: [Yes]1054

Justification: We properly acknowledge and cite all assets and resources used in the paper.1055

The license of the datasets is also explicitly mentioned as the CC-BY 4.0 license in our1056

Appendix.1057

31



Guidelines:1058

• The answer NA means that the paper does not use existing assets.1059

• The authors should cite the original paper that produced the code package or dataset.1060

• The authors should state which version of the asset is used and, if possible, include a1061

URL.1062

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1063

• For scraped data from a particular source (e.g., website), the copyright and terms of1064

service of that source should be provided.1065

• If assets are released, the license, copyright information, and terms of use in the1066

package should be provided. For popular datasets, paperswithcode.com/datasets1067

has curated licenses for some datasets. Their licensing guide can help determine the1068

license of a dataset.1069

• For existing datasets that are re-packaged, both the original license and the license of1070

the derived asset (if it has changed) should be provided.1071

• If this information is not available online, the authors are encouraged to reach out to1072

the asset’s creators.1073

13. New Assets1074

Question: Are new assets introduced in the paper well documented and is the documentation1075

provided alongside the assets?1076

Answer: [Yes]1077

Justification: We introduce a new dataset, Census Synthetic, with proper documentation on1078

how the dataset is curated in the Appendix. License is also based on the existing Census1079

dataset where it is CC-BY 4.0.1080

Guidelines:1081

• The answer NA means that the paper does not release new assets.1082

• Researchers should communicate the details of the dataset/code/model as part of their1083

submissions via structured templates. This includes details about training, license,1084

limitations, etc.1085

• The paper should discuss whether and how consent was obtained from people whose1086

asset is used.1087

• At submission time, remember to anonymize your assets (if applicable). You can either1088

create an anonymized URL or include an anonymized zip file.1089

14. Crowdsourcing and Research with Human Subjects1090

Question: For crowdsourcing experiments and research with human subjects, does the paper1091

include the full text of instructions given to participants and screenshots, if applicable, as1092

well as details about compensation (if any)?1093

Answer: [NA]1094

Justification: The paper does not involve crowdsourcing nor research with human subjects1095

Guidelines:1096

• The answer NA means that the paper does not involve crowdsourcing nor research with1097

human subjects.1098

• Including this information in the supplemental material is fine, but if the main contribu-1099

tion of the paper involves human subjects, then as much detail as possible should be1100

included in the main paper.1101

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1102

or other labor should be paid at least the minimum wage in the country of the data1103

collector.1104

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1105

Subjects1106

Question: Does the paper describe potential risks incurred by study participants, whether1107

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1108

approvals (or an equivalent approval/review based on the requirements of your country or1109

institution) were obtained?1110
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Answer: [NA]1111

Justification: The paper does not involve crowdsourcing nor research with human subjects.1112

Guidelines:1113

• The answer NA means that the paper does not involve crowdsourcing nor research with1114

human subjects.1115

• Depending on the country in which research is conducted, IRB approval (or equivalent)1116

may be required for any human subjects research. If you obtained IRB approval, you1117

should clearly state this in the paper.1118

• We recognize that the procedures for this may vary significantly between institutions1119

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1120

guidelines for their institution.1121

• For initial submissions, do not include any information that would break anonymity (if1122

applicable), such as the institution conducting the review.1123
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